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PBT Module 
 

The Statistics module in Win-Tensor allows to characterize the distribution of orientation data 
and to separate them into subset. The distribution analysis discriminates between cluster and 
girdle distributions and provides the average orientation and for the fault-slip data in the case of 
cluster distribution and the pole of the best-fit great circle in the case of girdle distributions. The 
subset separation is based on the procedure for separation of heterogeneous sets of orientation 
data into subsets developed by Huang and Charlesworth (1989). In this module, planar data 
(defined by their pole) and linear data are treated separately. The concentration parameters are 
also provided: the normalized length of the resultant vector R and the confidence cone angle. 
 
1/ Distribution of orientation data  
 
Statistics of clustered orientation data 
 
The average orientation and statistical dispersion (or concentration) of linear orientation data are 
computed by vectorial summation of their direction cosines, taking into account the weighting 
factor associated to each data. In this process, the poles to planes and lines are considered as 
vector. As vectors are defined by their direction, the vectors are flipped to point in the same 
direction of the principal axis before their summation, there fore considering parallel vectors in 
opposing direction as similar orientations as in the Watson bipolar distribution (Fisher et al., 
1987). The implementation of this statistics in Win-Tensor has been inspired by the published 
programs Watson (Dzik, 1992) and Orient (Charlesworth et al., 1989).  
 
The principal axis orientation of the resulting vector represents the average orientation of the 
orientation data set. The length (or magnitude) of the unit vectors are multiplied by the weight of 
the corresponding orientation data before they are summed up into a resulting vector R. The 
length of the latter is divided by the sum of all weighing factors (or the number of data if the 
weighting is not applied), leading a mean resulting vector Rm. The length (or magnitude) of Rm 
expresses the degree of clustering of the vectors. It ranges from a maximum of 1 for perfectly 
clustered populations where all orientation data are strictly parallel and it decreases progressively 
with data dispersion to to ~0.5 for uniformly distributed data (perfectly spread) on the sphere. 
 
The Ficher concentration parameter KA = (n – 2) / n - R), where R is the length of the resultant 
vector, ranges from zero for uniformly distributed data on the sphere and to infinity for a 
perfectly clustered data set (Huang and Charlersworth, 1989; Charlesworth et al., 1989). 
 
The mean distance between individual vectors and the mean vector (Mean Cone Angle) is 
defined by the half-apex angle MCA = arc cosine (Rm) of the mean circular cone around the 
principal axis direction. The mean cone angle is meaningful for valid cluster (Fisher) 
distributions, but is no more valid for point distributions that are not simple cluster 
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Note: The direction cosines are the three component of a unit vector obtained from the orientation 
parameters (azimuth and plunge of a pole to plane or of a line) as follows:  
 
X = sin(azimuth) * cos (plunge) 
Y = cos(azimuth) * cos(plunge) 
Z = -sin(plunge)  
 
Girdle distributions  
 
An alternative way to analyze the distribution of orientation data is to determine eigenvectors and 
eigenvalues from direction cosines matrix instead of using vectorial data and to evaluate the 
shape of the distribution (cluster v/s girdle) in a modified Flynn plot. 
 
Instead, we developed a convenient and straightforward method for analyzing data distributed 
along a great circle on a hemispheric projection. It uses the  
 
Cylindrical folds where the normal to the bedding planes measured unevenly on the cylindrically 
folded surface all lie in a single plane and plot on a stereographic projection along a best-fit great 
circle, the orientation of the fold axis corresponding to the pole of that plane (e.g. Lisle and 
Leyshon, 2004). In addition, the intersection between any pairs of bedding planes lying on the 
cylindrically folded surface ( b-axes) also plot at the vicinity of the fold axis. By extension and 
considering that a perfect girdle distribution of orientation poles defines a plane whose pole is 
sub-parallel to the b-axis of any pairs of intersecting planes, a rapid procedure has been 
developed to statistically describe girdle distributions.  
 
It involves first the calculation of the orientation of the b-axes of all possible pairs of planes in 
the data set. The number of intersections nI = (n^2 - n)/2 with n = the number of data in the set. 
The cluster distribution of the b-axes is computed as above, with the mean orientation 
representing the pole of the great circle best fitting the girdle distribution of poles. The length of 
the mean resulting vector summing all the b-axes (Rm_b-axes) is an expression of the degree of 
clustering of the intersection axes, as the derived KA concentration parameter and confidence 
cone angle. These dispersion parameters are good estimates of the degree of fitting of the great 
circle to the girdle distribution. They can be compared for the same data set to the dispersion 
parameters of the cluster distributions, with (Rm_poles) as the length of the mean resulting vector 
summing all the poles to the planes.  
 
The shape of the distribution is determined by comparing the dispersion parameters of both 
cluster and girdle distributions for the same data set. A distribution is considered as Clusters 
when their distribution of Poles have longer Rm axes and lower Ka and confidence cone angles 
than the corresponding distribution of b-axes. Conversely, Girdle distributions have longer Rm 
axes and lower Ka and confidence cone angles for the b-axis distribution when compared to the 
corresponding distribution of poles. 
 
Large differences between the distribution parameters of the poles and b-axes characterizes well 
defined (pure) clusters and girdles while similar values indicate clusters containing weak girdles 
or girdles containing weak clusters. 
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Limitaton of the intersection angle for girdle distributions 
 
Fine adjustments can be performed for improving the meaningfulness of the statistical results: the 
use of the weighting factor and/or different weighting mode, as the limitation of the intersection 
angle. 
 
For the calculation of the b-intersections, it could not be appropriate to compare pairs of planes 
that are sub-parallel to each other and belonging to the same group of the closely related data. In 
the example used above of a cylindrically folded surface, computing planes from the two limbs of 
the fold and oriented far from each other will likely give more reliable b-axes than pairs of planes 
coming from the same limb and closely oriented. It can be therefore necessary to avoid 
computing intersections of the latter by setting a minimum angle (limiting angle) below which 
pairs of planes will not be considered. This angle can either be taken as the half of the confidence 
cone angle for the Poles distribution of set manually. 
 
 
Application of weighting factor and weighting mode 
 
As said above, the average orientation and statistical dispersion can take into account the 
weighting factor associated to each data. If the weighting flag is checked, the length of the unit 
vector (direction cosine) is simply multiplied by the weighting factor. 
 
It will be seen elsewhere that the weighting factor itself can be applied in different way (this can 
be controlled in the Graphic Options dialog windows). In mode 1, the weight given to the data in 
the database is used as a multiplying factor. In mode 2, the square of the weight is used. In mode 
3, the weight is used as the exponent on basis 10. Mode 1 is the simplest to use and has a little 
effect on the results. It is advised when no particular attention has been put foreword on this 
during the data collection. Mode 2 is convenient for fault-slip data and when the dimension of the 
measured fault plane has been expressed by one side of a planar square that fit the surface of the 
observed fault. Mode 3 is specially designed for earthquake fault-slip data, when the weight 
factor corresponds to the magnitude. 
 
 
Distribution of linear data 
 
For linear data, the procedure is exactly similar as with planar data. It uses directly the linear data 
instead as converting first the planar data into poles. At the end of the procedure, the results are 
converted back into linear data. 
 
2/ Separation of data into subsets 
 
The separation of a heterogeneous data set into homogeneous subset is largely based on the 
algorithm and computer code of Huang and Charlesworth (1989).  
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Separation method 
 
With heterogeneous sets of orientation data, the mean orientation and dispersion of data cannot 
be estimated numerically using the mean resulting vector R, the Ficher concentration parameter 
KA or the Confidence Cone Angle as described by Fisher (1953), Fisher et al. (1987) and 
implemented by Dzik (1992) and Charlersworth et al. (1989). If data concentrations can be 
visually observed on stereographic projections they can be separated into homogeneous subsets 
using the numerical iterative sorting method based on dynamic cluster analysis developed by 
Hang and Charlersworth (1989). 
 
This method needs a first estimate of the number of subsets and their orientation. After plotting 
all orientations on a lower hemisphere and a visual identification of the subsets, the estimated 
mean orientations of the subsets are given. These will serve as nucleus for attracting orientation 
data during the iterative separation process. The maximum number of valid subsets obtained after 
the separation will be constrained by the number of initial estimates. If a specified nucleus does 
not attract data during the procedure, the subset will be considered as nonexistent. Specifying 
more subsets than visually observed or specifying initial orientations incorrectly will not alter the 
separation results.  
 
Using the initial nuclei, each orientation data will be assigned to the appropriate nucleus giving 
the smallest deviation angle. The mean vector of each nucleus will be computed using the 
orientations just assigned to them in order to obtain a better estimate of their mean orientation. 
This process is repeated until each orientation data is correctly assigned to a nucleus and the 
system stabilizes. 
 
To this original method, we added a limiting cone angle to limit the attracting influence of the 
nuclei. 
 
Implementation in the Statistics Module 
 
In the Statistics panel of the Processing worksheet the drop-down lists below labels “Planes: 
Subsets” and “Lines: Subsets” control the number of subsets for separating heterogeneous data 
sets into subsets (Fig.). Setting them to one will cause the computation of orientation statistics 
bases of single sets and determine their cluster or girdle distribution. Selecting more subsets 
(max. 5) will shift the separation method. 
 
After specifying a number of subsets larger than 1, the stereographic projection will be refreshed, 
and a moving cross will appear at the end of the mouse arrow, together with a tiny small red 
circle representing the proposed orientation for the first nucleus and the a larger small circle of 
red dots representing the limiting cone angle. The current orientation of the pointer is displayed 
in the text box above the stereogram plunge and azimuth angles. The orientation of the first 
nucleus is fixed by pressing the right button on the mouse. The moving cross will again appear 
with the proposed second nucleus. Right clicking will fix it again and theses steps are repeated 
until all nuclei have been defined. The separation is performed and the results are displayed 
numerically on the text area above the stereogram with the subset number and associated symbol, 
estimated orientation of the nucleus, calculated orientation, confidence cone angle and the 
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number of data attributed (  ). The subsets are also displayed on the stereogram with different 
symbols for each subset, a solid dot for non-attributed data, the computed orientations and the 
cone angle for each subsets (fig. ). 
 
To illustrate the robustness of the separation method, for the same initial data sets, we defined a 
total of 4 nuclei, 3 of them at the vicinity of the identified subsets but not at their approximate 
center and the last in an area where no data exits. The process correctly separates the original data 
set into 3 valid subsets separation process results, almost identical to the ones obtained in the 
preceding run with only 3 initial nuclei. The forth nucleus have no data attributed and two data 
have not been  attributed to any subset, being too far away from the initial nuclei taking into 
account a limiting cone angle of 30°. 
 
Again, the process can be customized by adjusting the limiting angle and the weighting factor as 
for single datasets. 
 
Assessing subset indexes to the separated data 
 
Click on Assess Subset Indexes 
Dialog box  

defining the range of data affected 
 the minor subset index to be attributed 
validate by clicking on Apply separation 
 
Subset indexes are affected and Subset manager refreshed 
 
Small button Apply enabled in regard to subsets in the dialog box. Click on them to select 
individual  minor subset to treat them separately  
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Cluster distribution 
 

Computed with limiting angle of 30° 

 

Intersections for limiting angle of 30° 

 
Intersections for limiting angle of 30° 

 

All 406 intersections 

 
 
A: 29 poles of planes (black), average orientation of poles (bold small red circle), Confidence Cone angle 
(20.2°, solid red small circle), limiting cone angle of 30° (small circle with thin red dots) and great circle 
normal to the average orientation (large red dots). 
B: Similar as A, with planes represented by dark great circles. 
C. Similar as A, with intersection plotted as small arrange dots. Note the good fit between the great circle 
and the girdle distribution of the intersections 
D. Similar as D, with all 406 intersections (0°) limiting angle. 
 
Limiting angle : 30° 
Orientation statistics of Poles of Planes (n=29) 
 N       Data    Orient.   Rm     Ka     MCA    Distrib. 
29       Poles   23/151   0,94  15,7    20,2°     Cluster 
153     b-axes 10/213   0,69  3,2      46,3° 

Limiting angle : 0° 
Orientation statistics of Poles of Planes (n=29) 
 N       Data    Orient.   Rm     Ka     MCA   Distrib 
29       Poles   23/151   0,94  15,7    20,2°    Cluster 
406     b-axes 10/215   0,65  2,9      49,2° 
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Girdle distribution 
 
Computed with limiting angle of 30° 

 

Intersections for limiting angle of 30° 

 
Intersections for limiting angle of 30° 

 

All 406 intersections 

 
 
A: 29 poles of planes (purple), average orientation of b-axes (bold red triangle), Confidence Cone angle 
for b-axes (20.2°, solid red small circle), limiting cone angle of 30° (small circle with thin red dots), and 
great circle normal to average b-axis fitting the girdle distribution of poles (large red dots).  
B: Similar as A, with planes represented by dark great circles. 
C. Similar as A, with intersection plotted as small arrange dots. Note the good fit between the great circle 
and the girdle distribution of the intersections 
D. Similar as D, with all 406 intersections (0°) limiting angle. 
 
Limiting angle : 30° 
Orientation statistics of Poles of Planes (n=29) 
 N       Data    Orient.   Rm     Ka    MCA  Distrib. 
29       Poles   27/160   0,77  4,2      39,8° 
238     b-axes 27/146   0,98  55,4    10,9°   Girdle 

Limiting angle : 0° 
Orientation statistics of Poles of Planes (n=29) 
 N       Data    Orient.   Rm     Ka     MCA  Distrib. 
29       Poles   27/160   0,77  4,2      39,8° 
406     b-axes 25/147   0,88  8,1      28,7°   Girdle 
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Mixed distribution 
 
1653 intersections for 0° limiting angle 

Preferred orientation: Cluster 

 

1300 intersections for 20° limiting angle 
Preferred orientation: Cluster 

 
999 intersections for 30° limiting angle 

Preferred orientation: Girdle 

 

470 intersections for 50° limiting angle 
Preferred orientation: Girdle 

30°
 
Mixed data set formed by 29 poles of planes from the cluster data sets used above (black) and 23 poles 
from the girdle distribution (purple). Average orientations, Confidence Cone Angle, limiting cone angle 
and great circles as above. 
This series of stereograms illustrate the effect of the progressive increase of the limiting angle between 
pairs of planes for computing the b-axes. The b-intersections are widely dispersed with no or limited 
angular limitation (limiting angle < 21°) and the poles are more clustered than the b-axes. With increasing 
limitation angle, the b-axes become progressively more clustered and their clustering surpasses the 
clustering of the poles. In consequence, the preferred distribution is cluster when the limiting angle is 
small, and girdle when it is high (more than 21° in the present case).  
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Separation into subsets 
 
 

 

 

 
Limiting angle: 30° 
Subset   N    Estim.    Calcul.  Rm   Ka    MCA 
(+) 1 :    15   49/210   48/210  0,97  34,5  12,9 
(x) 2 :    28   24/148   25/154  0,95  20,1  17,5 
(o) 3 :    14   50/082   44/087  0,97  31,7  13,3 
Non-attributed data :1 

 

 

Limiting angle: 30° 
Subset   N    Estim.    Calcul.  Rm   Ka    MCA 
(+) 1 :    11   75/082   47/084  0,98  45,4  10,9 
(x) 2 :    25   52/140   28/142  0,96  23,1  16,2 
(o) 3 :    20   50/235   42/209  0,96  21,7  16,6 
(^) 4 :    0     56/337 
Non-attributed data :2 

 
 


